g-CLOSED TYPE SETS AND g*-CLOSED TYPE SETS IN TOPOLOGICAL ORDERED SPACES

G.SRINIVASARAO¹, N.SRINIVASARAO², CH. RAMPRASAD³, M.V.SUBBARAO⁴

 ¹Tirumala Engineering College, Jonnalagadda(Vill.),Narasaraopet mohanadurga2000@gmail.com)
²Vignan's University, Vadlamudi(Vill.), Guntur srinivasunimmaa@yahoo.co.in)
³Vingnan's University, Vadlamudi(Vill.), Guntur <u>rm.prasad3@qmail.com</u>
⁴Vignan's Universisty, Vadlamudi(Vill.), Guntur. subbaraovu@qmail.com

Abstract: - In this paper we introduce ig-closed sets, dg-closed sets, bg-closed sets, and studied relationship between them. Also we introduce ig^{*}-closed sets, dg^{*}-closed sets, bg^{*}-closed sets and we discuss the possible relations between newly introducing sets.

Keywords: - bg-closed, bg*-closed, dg-closed, dg*closed, ig-closed and ig*-closed sets.

I. INTRODUCTION

Leopoldo Nachbin [1] initiated the study of topological ordered spaces. Levine [4] introduced the class of g-closed sets, a super class of sets in 1970. M.K.R.S.Veera Kumar [2]introduced a new class of sets, called g^* -closed sets in 2000, which is properly placed in between the class of closed sets and the class of g-closed sets. M.K.R.S.Veera Kumar [3] introduced the study of i-closed, dclosed and b-closed sets in 2001.

A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on X. Where X is a non-empty set and \leq is a partial order on X.

DEFINITION 1.1 [3] For any $x \in X$, $\{y \in X/x \le y\}$ will be denoted by $[x, \rightarrow] \{y \in X/y \le x\}$ will be denoted by $[\leftarrow, x]$. A subset A of a topological ordered space (X, τ, \le) is said to be increasing if A = i(A) where $i(A) = \bigcup_{a \in A} [a, \rightarrow]$. **DEFINITION 1.2 [3]** For any $x \in X$, $\{y \in X/y \le x\}$ will be denoted by $[\leftarrow, x]$. A subset A of a topological ordered space (X, τ, \le) is said to be a decreasing if A = d(A), where $d(A) = \bigcup_{a \in A} [a, \leftarrow]$

The complement of a decreasing (resp. an increasing) set is an increasing (resp. a decreasing) set. C(A) denotes the complement of A in X.

 $icl(A) = \bigcap \{F/F \text{ is an increasing closed subset of } X$ containing A}

 $dcl(A) = \bigcap \{F/F \text{ is a decreasing closed subset of } X$ containing A}

 $bcl(A) = \bigcap \{F/F \text{ is a closed subset of X containing}$ A with $F = i(F) = d(F) \}$

IO(X) (resp.**DO(X)**, **BO(X)**) denotes the collection of all increasing (resp.decreasing, both increasing and decreasing) open subsets of a topological ordered space (X, τ , \leq).

For a subset A of a space (X, τ, \leq) , icl(A) (resp.dcl(A), bcl(A)) denote the increasing (resp.decreasing, both increasing and decreasing) closure of A.

DEFINITION 2.1. A subset A of a

topological space (X , τ) is called

- a generalized closed set (briefly gclosed) [4] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).
- 2. a g^{*}-closed set [1] if if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ).
- 3. an i-closed set [3] if A is an increasing set and closed set.
- 4. a d-closed set [3] if A is a decreasing set and closed set.
- 5. a b-closed set [3] if A is a both increasing and decreasing set and a closed set.

THEOREM 2.2. [2] Every closed set is a g-closed set.

The following example supports that a gclosed set need not be closed set in general.

EXAMPLE 2.3. Let $X = \{a, b, c\}, \tau_2 =$

 $\{\phi, X, \{a\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_2, \leq_1) is a topological ordered space.

closed sets are ϕ , X, {b, c}. g-closed sets are ϕ , X, {b}, {c}, {a,b}, {b, c}, {c,a}.

Let $A = \{c\}$. Clearly A is a g-closed set but not a closed set.

THEOREM 2.4. [2] Every g^{*}-closed set is a g-closed set.

The following example supports that a gclosed set need not be a g*-closed set in general.

EXAMPLE 2.5. Let $X = \{a, b, c\}, \tau_2 = \{$

 ϕ , X, {a}} and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_2, \leq_1) is a topological ordered space.

g-closed sets are ϕ , X, {b}, {c}, {a,b}, {b, c}, {c,a}.

g^{*}-closed sets are ϕ , X, {b, c}.

Let $A=\{c\}$. Then A is a g-closed set but not a g^* -closed set.

II. HEADINGS § 3. Results between ig, dg and bg-

closed type sets

We introduce the following definitions.

DEFINITION 3.1. A subset 'A' of (X, τ, \le) is called ig-closed set if $icl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

The class of all ig-closed subsets of (X , τ , \leq) is denoted by IGC(X).

DEFINITION 3.2. A subset 'A' of (X, τ, \le) is called a dg-closed set if dcl(A) \subseteq U whenever A \subseteq U and U is an open in (X, τ) .

The class of all dg-closed subsets of (X, τ) is denoted by DGC(X).

DEFINITION 3.3. A subset 'A' of (X, τ, \le) is called a bg-closed set if $bcl(A) \subseteq U$ whenever A $\subseteq U$ and U is an open in (X, τ) .

The class of all bg-closed subsets of (X , τ) is denoted by BGC(X).

EXAMPLE 3.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

Let $A = \{c\}$. A is an ig-closed set. Let $B = \{b\}$. B is not an ig-closed set.

THEOREM 3.5. Every i-closed set is an ig-closed set.

Proof. We know that every closed set is a g-closed set. Then every i-closed set is an ig-closed set.

The following example supports that an igclosed set need not be an i-closed set in general.

EXAMPLE 3.6. Let $X = \{a, b, c\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_2, \leq_2) is a topological ordered space.

ig-closed sets are Φ , X, {b}, {a, b}. i-closed sets are ϕ , x. Let A = {b} or {a, b}.

Clearly A is an ig-closed set but not an i-closed set.

So the class of all ig-closed sets properly contains the class of all i-closed sets.

We introduce the following definition.

EXAMPLE 3.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

Let $A = \{a, c\}$. Clearly A is a dg-closed set. Let B = $\{a\}$. Clearly B is not a dg-closed set.

THEOREM 3.8. Every d-closed set is a dg-closed set.

Proof. We know that every closed set is a g-closed set. Then every d-closed set is a dg-closed set.

The following example supports that a dgclosed set need not be d-closed set in general.

EXAMPLE 3.9. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_2, \leq_2) is a topological ordered space.

dg-closed sets are ϕ , X, {c}, {b, c}. d-closed sets are ϕ , X, {b, c}.

Let $A = \{c\}$. Clearly A is a dg-closed set but not a d-closed set.So the class of all dg-closed sets properly contains the class of all d-closed sets.

EXAMPLE 3.10. Let $X = \{a, b, c\}, \tau_5 = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $\leq_5 = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Clearly (X, τ_5, \leq_5) is a topological ordered space.

Let $A = \{c\}$. Clearly A is a bg-closed set. Let $B = \{a, c\}$. Clearly B is not a bg-closed set.

THEOREM 3.11. Every b-closed set is a bgclosed set.

Proof. We know that every closed set is a g-closed set. Then every b-closed set is a bg-closed set.

The following example supports that a bg-closed set need not be a b-closed set in general.

EXAMPLE 3.12. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and

 $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}.$ Clearly (X, τ_2 , \leq_3) is a topological ordered space. bg-closed sets are ϕ , X, {c}. b-closed sets are ϕ , X.

Let $A = \{c\}$. Clearly A is a bg-closed set but not a b-closed set.

So the class of all bg-closed sets properly contains the class of all b-closed sets.

THEOREM 3.13. Every bg-closed set is an igclosed set.

Proof. We know that every balanced set is an increasing set. Then every bg-closed set is an ig-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 3.14. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

Let $A = \{c\}$. Clearly A is an ig-closed set but not a bg-closed set.

THEOREM 3.15. Every bg-closed set is a dg-closed set.

Proof. We know that every balanced set is a decreasing set. Hence every bg-closed set is

a dg-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

Let $A = \{a, c\}$. Clearly A is a dg-closed set but not a bg-closed set.

The class of all dg-closed sets properly contains the class of all bg-closed sets.

THEOREM 3.17. ig-closedness and dg-closedness are independent notions. This will be proved by in the following examples.

EXAMPLE 3.18. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space. Let $A = \{c\}$. Clearly A is an ig-closed set but not a dg-closed set.

EXAMPLE 3.19. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

Let $A = \{a, c\}$. Clearly A is a dg-closed set but not an ig-closed set.

THEOREM 3.20. Every b-closed set set is an i-closed set.

Proof. We know that every balanced set is an increasing set. Then every b-closed set is an i-closed set.

. The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 3.21. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

i-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an i-closed set but not a b-closed set.

The class of all i-closed sets properly contains the class of all b-closed sets.

THEOREM 3.22. Every b-closed set is a d-closed set.

PROOF. We know that every balanced set is a decreasing set. Then every b-closed set is a d-closed set.

The converse of above theorem need not be true. This will be justify from the following example..

EXAMPLE 3.23. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_1, \leq_2) is a topological ordered space.

d-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is a d-closed set but not a b-closed set.

The class of all d-closed sets properly contains the class of all b-closed sets.

THEOREM 3.24. i-closedness and d-closedness are independent notions. This will be proved by the following examples.

EXAMPLE 3.25. Example 3.21 shows that $A = \{c\}$ or $\{b, c\}$ is an i-closed set but not a d-closed set.

EXAMPLE 3.26. Example 3.23 shows that $A = \{c\}$ or $\{b, c\}$ is a d-closed set but not a i-closed set.

§4. Results between ig^{*}, dg^{*} and bg^{*}closed type sets

We introduce the following definition.

DEFINITION 4.1. A subset 'A' of (X, τ, \le) is called a ig^{*}-closed set if icl(A) \subseteq U whenever A \subseteq U and U is a g-open in (X, τ) .

The class of all ig^{*}-closed subsets of (X , τ) is denoted by IG^{*}C(X).

DEFINITION 4.2. A subset 'A' of (X, τ, \le) is called a dg^{*}-closed set if dcl(A) \subseteq U whenever A \subseteq U and U is a g-open in (X, τ) .

The class of all dg^{*}-closed subsets of (X, τ) is denoted by DG^{*}C(X).

DEFINITION 4.3. A subset 'A' of (X, τ, \leq) is called a bg^{*}-closed set if bcl(A) \subseteq U whenever A \subseteq U and U is a g-open in (X, τ) .

The class of all dg^{*}-closed subsets of (X , τ) is denoted by BG^{*}C(X).

THEOREM 4.4. Every ig^{*}-closed set is an igclosed set.

Proof. We know that every g^* -closed set is a gclosed set. Then every ig^* -closed set is an ig-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.5. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (a, b), (c, c), (a, b), (c, c), (c,$

(b, c), (a, c)}. Clearly (X, τ_2, \leq_1) is a topological ordered space.

ig-closed sets are ϕ , X, {c}, {b, c}. ig^{*}-closed sets are ϕ , X, {b, c}.

Let $A = \{c\}$. Clerly A is an ig-closed set but not a ig^{*}-closed set.

So the class of all ig-closed sets properly contains the class of all ig *-closed sets.

THEOREM 4.6. Every dg^{*}-closed set is an dgclosed set.

Proof. We know that every g^* -closed set is a gclosed set. Then every dg^* -closed set is an dgclosed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.7. Let $X = \{a, b, c\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_2, \leq_2) is a topological ordered space.

dg-closed sets are ϕ , X, {c}, {b, c}. dg^{*}-closed sets are ϕ , X, {b, c}.

Let $A = \{c\}$. Clerly A is an dg-closed set but not a dg^* -closed set.

So the class of dg-closed sets properly contains the class of all dg^* -closed sets.

THEOREM 4.8. Every bg^{*}-closed set is a bgclosed set.

Proof. We know that every g^* -closed set is a gclosed set. Then every bg^* -closed set is a bg-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.9. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, b), (c, c), (a, b), (c, c), (c,$

(a , c)}. Clearly (X , τ_2,\leq_3) is a topological ordered space.

bg^{*}-closed sets are ϕ , X. bg-closed sets are ϕ , X, {c}.

Let $A = \{c\}$. Clearly A is bg-closed set but not a bg^* -closed set.

So the class of bg-closed sets properly contains the class of all bg^{*}-closed sets.

THEOREM 4.10. Every bg^{*}-closed set is an ig^{*}- closed set.

Proof. We know that every balanced set is an increasing set. Then every bg*-closed set is an ig*- closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.11. Let X = {a, b, c}, $\tau_3 = \{\phi, X\}$

, {a}, {b, c}} and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_3, \leq_3) is a topological ordered space.

Let $A = \{b\}$. Clearly A is an ig^{*}-closed set but not a bg^* -closed set.

THEOREM 4.12. Every bg^{*}-closed set is an dg^{*}- closed set.

Proof. We know that every balanced set is an dereasing set. Then every bg^* -closed set is an dg^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.13. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

Let $A = \{a, c\}$. Clearly A is a dg^{*}-closed set but not a ig^{*}-closed set.

The class of all dg^{*}-closed sets properly contains the class of all bg^{*}-closed sets.

THEOREM 4.14. ig^{*}-closedness and dg^{*}closedness are independent notions. This will be proved by in the following examples.

EXAMPLE 4.15. Let $X = \{a, b, c\}$, $\tau_3 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_3, \leq_3) is a topological ordered space.Let $A = \{b\}$. Clearly A is an ig^{*}-closed set but not a dg^{*}-closed set.

EXAMPLE 4.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

Let $A = \{a, c\}$. Clearly A is a dg^{*}-closed set but not a ig^{*}-closed set.

THEOREM 4.17. Every i-closed set is an ig^{*}-closed set.

Proof. We know that every closed set is a g^* -closed set. Then every i-closed set is an i g^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.18. Let $X = \{a, b, c\}, \tau_3 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq_4 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_3, \leq_4) is a topological ordered space.

ig^{*}-closed sets are ϕ , X, {b, c}. i-closed sets are ϕ , X.

Let $A = \{b, c\}$. Clearly A is a ig^{*}-closed set but not an i-closed set.

The class of all ig^{*}-closed sets properly contains the class of all i-closed sets.

THEOREM 4.19. Every d-closed set is a dg^{*}- closed set.

Proof. We know that every closed set is a g^* -closed set. Then every d-closed set is a dg^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example. International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 ISSN 2229-5518

EXAMPLE 4.20. Let $X = \{a, b, c\}, \tau_4 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_4, \leq_2) is a topological ordered space.

dg^{*}-closed sets are ϕ , X, {b, c}. d-closed sets are ϕ , X.

Let $A = \{b, c\}$. Then A is dg^{*}-closed set but not a d-closed set.

The class of all dg^* -closed sets properly contains the class of all d-closed sets.

THEOREM 4.21. Every b-closed set is a bg^{*}-closed set.

PROOF. We know every closed set is a g^* -closed set. Then every b-closed set is a bg^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.22. Let $X = \{a, b, c\}, \tau_6 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\{a, c\}\}$ and $\leq_7 = \{(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)\}$. Clearly (X, τ_6, \leq_7) is a topological ordered space.bg*-closed sets are ϕ , X, $\{b\}$. b-closed sets are ϕ , X.

Let $A = \{b\}$. Then A is bg^{*}-closed set but not a bclosed set.

The class of all bg^{*}-closed sets properly contains the class of all b-closed sets.

THEOREM 4.23. Every bg^{*}-closed set is an igclosed set.

Proof. We know that every balanced set is an increasing set and every g^{*}-closed set is a g-closed set . Then every bg^{*}-closed set is an ig-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.24. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

bg^{*}-closed sets are ϕ , X. ig-closed sets are ϕ , X, $\{c\}, \{b, c\}$.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an ig-closed set but not a bg^* -closed set.

The class of all ig-closed sets properly contains the class of all bg^{*}-closed sets.

THEOREM 4.25. Every bg^{*}-closed set is a dgclosed set.

Proof. We know that every balanced set is a decreasing set and every g^{*}-closed set is a g-closed set . Then every bg^{*}-closed set is a dg-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.26. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly (X, τ_1, \leq_2) is a topological ordered space.

bg^{*}-closed sets are ϕ , X. dg-closed sets are ϕ , X, {c}, {b, c}.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is a dg-closed set but not a bg^{*}-closed set.

The class of all dg-closed sets properly contains the class of all bg^{*}-closed sets.

THEOREM 4.27. bg-closedness and ig^{*}-closedness are independent notions. This will be seen in the following examples.

EXAMPLE 4.28. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

ig^{*}-closed sets are ϕ , X, {c}, {b, c}. bg-closed sets are ϕ , X

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an ig^{*}-closed but not a bg-closed set.

EXAMPLE 4.29. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and $\leq_5 = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Clearly (X, τ_2, \leq_5) is a topological ordered space.ig^{*}-closed sets are ϕ , X, $\{b, c\}$. bg-closed sets are ϕ , X, $\{c\}, \{b, c\}, \{c, a\}$.

Let $A = \{c\}$ or $\{c, a\}$. Clearly A is an bgclosed set but not a ig^{*}-closed set.

THEOREM 4.30. bg-closedness ad dg^{*}-closedness are independent notions. This will be seen in the following examples.

EXAMPLE 4.31. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_1, \leq_3) is a topological ordered space.

dg^{*}-closed sets are ϕ , X, {c}, {b, c}. bg-closed sets are ϕ , X, {c}.

Let $A = \{b, c\}$. Clearly A is a dg^{*}-closed set but not a bg-closed set.

EXAMPLE 4.32. Let $X = \{a, b, c\}, \tau_2 = \{\phi, X, \{a\}\}$ and $\leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Clearly (X, τ_2, \leq_3) is a topological ordered space.

dg^{*}-closed sets are ϕ , X. bg-closed sets are ϕ , X, {c}.

Let $A = \{c\}$. Clearly A is a bg-closed set but not a dg^* -closed set.

THEOREM 4.33. Every i-closedness and bg^{*}closedness are independent notions. This will be seen in the following examples.

EXAMPLE 4.34. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

bg^{*}-closed sets are ϕ , X. i-closed sets are ϕ , X, {c}, {b, c}.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an i-closed set but not a bg^* -closed set.

The class of all i-closed sets properly contains the class of all bg^{*}-closed sets.

EXAMPLE 4.35. Let $X = \{a, b, c\}$, $\tau_{10} = \{\phi, X, \{c\}, \{b, c\}\}$ and $\leq_5 = \{(a, a), (b, b), (c, c), (b, c), (a, c)\}$. Clearly (X, τ_{10}, \leq_5) is a topological ordered space. bg^{*}-closed sets are ϕ , X, {c, a}. i-closed sets are ϕ , X.

Let $A = \{c, a\}$. Clearly A is a bg^{*}-closed set but not an i-closed set.

The class of all bg^{*}-closed sets properly contains the class of all i-closed sets.

THEOREM 4.36. d-closedness and bg^{*}-closedness are independent notions. This will be seen in the following examples.

EXAMPLE 4.37. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b))\}$. Clearly (X, τ_1, \leq_2) is a topological ordered space. bg^{*}-closed sets are ϕ , X. d-closed sets are ϕ , X, $\{c\}, \{b, c\}$.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is a d-closed set but not a bg^* -closed set.

The class of all bg^{*}-closed sets properly contains the class of all d-closed sets.

EXAMPLE 4.38. Let $X = \{a, b, c\}, \tau_8 = \{\phi, X, \{a, b\}\}$ and $\leq_5 = \{(a, a), (b, b), (c, c), (a, c), (b, c))\}$. Clearly (X, τ_8, \leq_5) is a topological ordered space.

bg^{*}-closed sets are ϕ , X, {c}, {b, c}, {c, a}. d-closed sets are ϕ , X, {c}.

Let $A = \{b, c\}$ or $\{c, a\}$. Clearly A is bg^* -closed set but not a d-closed set.

The class of all bg^{*}-closed sets properly contains the class of all d-closed sets.

THEOREM 4.39. Every b-closed set is an ig^* closed set.Proof. We know that every closed set is a g^* -closed set and every balanced set is an increasing set. Then every b-closed set is an ig^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.40. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ_1, \leq_1) is a topological ordered space.

ig^{*}-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an ig^{*}-closed set but not a b-closed set.

The class of ig^{*}-closed sets properly contains the class of all b-closed sets.

THEOREM 4.41. Every b-closed set is a dg^{*}-closed set.

Proof. We know that every balanced set is a decreasing set and every closed set is a g^* -closed set. Then every b-closed set is a dg^* -closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.42. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and

 $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}.$ (b)}.Clearly (X, τ_1, \leq_2) is a topological ordered space. dg^{*}-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is a dg^{*}-closed set but not a b-closed set.

The class of dg^{*}-closed sets properly contains the class of all b-closed sets.

THEOREM 4.43. Every b-closed set is an igclosed set. Proof. We know that every closed set is a g-closed set and every balanced set is an increasing set. Then every b-closed set is an ig-closed set.

The converse of the above theorem need not be true as we see the following example.

EXAMPLE 4.44. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and

 $\leq_1 = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}.$ Clearly (X, τ_1 , \leq_1) is a topological ordered space. ig-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is an ig-closed set but not a b-closed set.

The class of all ig-closed sets properly contains the class of all b-closed sets.

THEOREM 4.43. Every b-closed set is a dg-closed set.

Proof. We know that every balanced set is a decreasing set and every closed set is a g^* -closed set. Then every b-closed set is a dg-closed set.

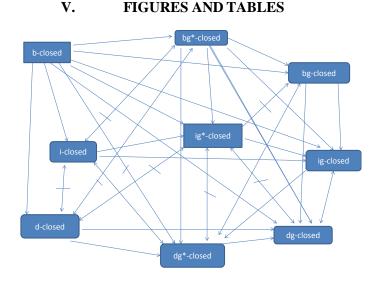
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 4.44. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and

 $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}.$ Clearly (X, τ_1, \leq_2) is a topological ordered space. dg-closed sets are ϕ , X, {c}, {b, c}. b-closed sets are ϕ , X.

Let $A = \{c\}$ or $\{b, c\}$. Clearly A is a dg-closed set but not a b-closed set.

III. IV. 1284



VI. CONCLUSION

In this paper, we introduced, new class of sets, studied various relationship between them.

ACKNOWLEDGEMENTS

An acknowledgement section may be presented after the conclusion, if desired.

REFERENCES

1. Leopoldo Nachbin, Topology and order, D.Van Nostrand Inc., Princeton, New Jersey [1965].

2. M.K.R.S. Veera Kumar, Between closed sets and g-closed sets, Mem.Fcc.Sci.Sec A , Math.Kochi University, 21(2000), 1-19.

3. M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII(M), No.1.(2002), 67-76.

4. N.Levine, Generalized closed sets in topology, Rend. Circ.Math.Palermo, 19(2) (1970), 89-96.

