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I. INTRODUCTION 
Leopoldo Nachbin [1] initiated the study of 
topological ordered spaces.  Levine [4] introduced 
the class of g-closed sets, a super class of sets in 
1970.  M.K.R.S.Veera Kumar [2]introduced a new 
class of sets, called g*-closed sets in 2000, which is 
properly placed in between the class of closed sets 
and the class of g-closed sets.  M.K.R.S.Veera 
Kumar [3] introduced  the study of i-closed, d-
closed and b-closed sets in 2001. 

 A topological ordered space is a triple        
(X ,τ ,  ≤ ), where τ  is a topology on X , Where X 
is a non-empty set and ≤ is a partial order on X.  

DEFINITION 1.1 [3]  For any x∈X,  {y∈X/x≤y} 
will be denoted by  [x,→ ] {y∈X/y≤x} will be 
denoted by [← , x].  A subset A of a topological 
ordered space (X ,τ ,  ≤)  is said to be increasing if 
A = i(A) where i(A) = 

Aa∈
 [a,→ ] .     

DEFINITION 1.2 [3]   For any x∈X, {y∈X/y≤x} 
will be denoted by [← , x].  A subset A of a 
topological ordered space (X ,τ ,  ≤)  is said to be  a 
decreasing  if  A = d(A), where   d(A) = 

Aa∈
 [a,← ]   

 The complement of a decreasing (resp.an 
increasing) set is an increasing (resp. a decreasing) 
set. C(A) denotes the complement of A in X. 

icl(A) =  {F/F is an increasing closed subset of X 
containing A} 

dcl(A) =  {F/F is a decreasing closed subset of X 
containing A} 

bcl(A) =  {F/F is a closed subset of X containing 
A with F = i(F) = d(F)} 

 IO(X) (resp.DO(X), BO(X)) denotes the 
collection of all increasing (resp.decreasing, both 
increasing and decreasing) open subsets of a 
topological ordered space (X ,τ ,  ≤ ). 

 For a subset A of a space (X ,τ ,  ≤ ) , icl(A) 
(resp.dcl(A), bcl(A)) denote the increasing 
(resp.decreasing, both increasing and decreasing) 
closure of A. 
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 DEFINITION 2.1. A subset A of a 
topological space (X , τ ) is called 

1. a generalized closed set (briefly g-
closed) [4] if  cl(A)⊆  U  whenever A⊆
U and     U is open in (X,τ ). 

2. a  g*-closed set [1]  if  if  cl(A)⊆  U  
whenever A⊆U and   U is g-open in (X,
τ ).  

3. an i-closed set  [3] if A is an increasing 
set and closed set. 

4. a d-closed set [3] if A is a decreasing set 
and closed set. 

5. a b-closed set  [3] if A is a both 
increasing and decreasing set and a 
closed set. 
 
THEOREM 2.2. [2] Every closed set is 
a g-closed set. 
The following example supports that a g-
closed set need not be closed set in 
general. 

 EXAMPLE 2.3.  Let X = {a , b , c} ,  2τ  = 
{φ  , X , {a}} and  ≤1 = {(a , a) , (b , b) ,  (c , c) , 
(a , b) , (b , c) , (a , c)}.  Clearly (X , ,2τ ≤1 ) is a 
topological ordered space. 

 closed sets are φ  , X  , {b , c}. g-closed sets 
are  φ , X , {b}, {c}, {a,b}, {b , c}, {c,a}. 

 Let A={c}.  Clearly A is a g-closed set but 
not a closed set. 

 THEOREM 2.4.  [2]  Every g*-closed set is 
a g-closed set. 

 The following example supports that a g-
closed set need not be a g*-closed set in            
 general. 

 EXAMPLE 2.5. Let X = {a , b , c} ,  2τ  = {
φ  , X , {a}} and   ≤1 = {(a , a) , (b , b) ,  (c , c) , 
(a , b) , (b , c) , (a , c)}.  Clearly (X , ,2τ ≤1 ) is a 
topological ordered space. 

 g-closed sets areφ , X , {b}, {c}, {a,b}, {b , 
c}, {c,a}.  

 g*-closed sets are  φ , X , {b , c}. 

 Let A={c}.  Then A is a g-closed set but not 
a g*-closed set.     
  

 
II. HEADINGS 

§ 3.  Results between ig, dg and bg-
closed type sets 

We introduce the following definitions. 

DEFINITION 3.1.  A subset ‘A’ of (X , ,τ  ≤ ) is 
called ig-closed set if  icl(A)⊆U whenever        A⊆
U and U is open in (X , τ ). 

The class of all ig-closed subsets of (X , ,τ  
≤ ) is denoted by IGC(X). 

DEFINITION 3.2.  A subset  ‘A’ of (X , ,τ  ≤ ) is 
called a dg-closed set if dcl(A) ⊆  U whenever    A
⊆U and U is an open in (X , τ ). 

The class of all dg-closed subsets of (X , τ ) is 
denoted by DGC(X). 

DEFINITION 3.3.  A subset  ‘A’ of (X , ,τ  ≤ ) is 
called a bg-closed set if  bcl(A) ⊆  U whenever     A
⊆U and U is an open in (X , τ ). 

The class of all bg-closed subsets of (X , τ ) is 
denoted by BGC(X).    

EXAMPLE 3.4.  Let X = {a , b , c} ,  1τ  = {φ  , X , 
{a} , {b} , {a , b}} and ≤1 = {(a , a) ,       (b , b) , 
(c , c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1τ  ≤1 ) 
is a topological ordered space. 

Let A = {c}.  A is  an ig-closed set.  Let B = {b}.  B 
is  not an ig-closed set. 

THEOREM 3.5.  Every i-closed set is an ig-closed 
set. 

Proof. We know that every closed set is a g-closed 
set.  Then every i-closed set is an ig-closed set. 
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 The following example supports that an ig-
closed set need not be an i-closed set in general. 

EXAMPLE 3.6.  Let X = {a , b , c} ,  2τ  = {φ  , X , 
{a}} and ≤2 = {(a , a) , (b , b) , (c , c) ,      (a , b) , 
(c , b)}. Clearly (X , ,2τ  ≤2  ) is a topological 
ordered space. 

ig-closed sets are Φ , X , {b} , {a , b}.  i-closed sets 
are φ  , x. Let A = {b} or {a , b}.  

 Clearly A is an ig-closed set but not an i-closed set. 

 So the class of all ig-closed sets properly 
contains the class of all i-closed sets. 

We introduce the following definition. 

EXAMPLE 3.7.  Let X = {a , b , c} ,  1τ  = {φ  , X , 
{a} , {b} , {a , b}} and ≤3 = {(a , a) ,       (b , b) , 
(c , c) , (a , b) , (a , c)}. Clearly (X , ,1τ  ≤3 ) is a 
topological ordered space.  

Let A = {a , c}.  Clearly A is a dg-closed set.  Let B 
= {a}.  Clearly B is not a dg-closed set.  
     

THEOREM 3.8. Every d-closed set is a dg-closed 
set. 

Proof. We know that every closed set is a g-closed 
set.  Then every d-closed set is a dg-closed set. 

 The following example supports that a dg-
closed set need not be d-closed set in general. 

EXAMPLE 3.9.  Let X = {a , b , c} ,  2τ  = {φ  , X , 
{a}} and ≤2 = {(a , a) , (b , b) , (c , c) ,     (a , b) , 
(c , b)}. Clearly (X , ,2τ  ≤2 ) is a topological 
ordered space. 

dg-closed sets areφ   , X , {c} , {b , c}.  d-closed 
sets are   φ ,  X , {b , c}.    

Let A = {c}.  Clearly A is a dg-closed set but not a 
d-closed set.So the class of all dg-closed sets 
properly contains the class of all d-closed sets. 
   

EXAMPLE 3.10.  Let X = {a , b , c} ,  5τ  = {φ  , X 
, {a} , {a , b} , {a , c}} and    ≤5 = {(a , a) , (b , b) 
, (c , c) , (a , c) , (b , c)}. Clearly (X , ,5τ  ≤5 ) is a 
topological ordered space. 

Let A = {c}.  Clearly A is a bg-closed set.  Let B = 
{a , c}.  Clearly B is not a bg-closed set. 

THEOREM 3.11.  Every b-closed set is a bg-
closed set. 

Proof.  We know that every closed set is a g-closed 
set.  Then every b-closed set is a bg-closed set. 

The following example supports that a bg-closed set 
need not be a b-closed set in general. 

EXAMPLE 3.12.  Let X = {a , b , c} ,  2τ  = {φ  , X 
, {a}} and  

≤3 = {(a , a) , (b , b) , (c , c) , (a , b) , (a , c)}. 
Clearly (X , ,2τ  ≤3 ) is a topological ordered space.  
bg-closed sets are φ  , X , {c}.  b-closed sets are φ  , 
X. 

Let A = {c}.   Clearly A is a bg-closed set but not a 
b-closed set. 

So the class of all bg-closed sets properly contains 
the class of all b-closed sets.    

THEOREM 3.13.  Every bg-closed set is an ig-
closed set. 

Proof.  We know that every balanced set is an 
increasing set.  Then every bg-closed set is an    ig-
closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 3.14.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and ≤1 = {(a , a) , (b , b) , (c , 
c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1τ  ≤1 ) is a 
topological ordered space. 

Let A = {c}.  Clearly A is an ig-closed set but not a 
bg-closed set. 
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THEOREM 3.15.  Every bg-closed set is a dg-
closed set. 

Proof.  We know that every balanced set is a 
decreasing set.  Hence every bg-closed set is  

a dg-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

 

EXAMPLE 3.16.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and   ≤3 = {(a , a) , (b , b) , (c 
, c) , (a , b) , (a , c)}. Clearly (X , ,1τ ≤3 ) is a 
topological ordered space. 

Let A = {a , c}.  Clearly A is a dg-closed set but not 
a bg-closed set. 

The class of all dg-closed sets properly contains the 
class of all bg-closed sets. 

THEOREM 3.17.  ig-closedness and dg-closedness 
are independent notions.  This will be proved by in 
the following examples. 

EXAMPLE 3.18.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and   ≤1 = {(a , a) , (b , b) , (c 
, c) , (a , b) , (b , c) , (a , c)}.  Clearly (X , ,1τ  ≤1 ) is 
a topological ordered space.  Let A = {c}.  Clearly 
A is an ig-closed set but not a dg-closed set.  
     

EXAMPLE 3.19.    Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and ≤3 = {(a , a) ,   (b , b) , 
(c , c) , (a , b) , (a , c)}. Clearly (X , ,1τ  ≤3 ) is a 
topological ordered space. 

Let A = {a , c}.  Clearly A is a dg-closed set but not 
an ig-closed set.    

THEOREM 3.20.  Every b-closed set set is an i-
closed set. 

Proof. We know that every balanced set is an 
increasing set.  Then every b-closed set is an         i-
closed set.    

. The converse of above theorem need not be true.  
This will be justify from the following example. 
  

EXAMPLE 3.21.    Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and ≤1 = {(a , a) , (b , b) , 
(c , c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1τ ≤1 ) 
is a topological ordered space. 

i-closed sets are φ  , X , {c} , {b , c}.   b-closed sets 
are φ  , X. 

Let A = {c} or {b , c} .  Clearly A is an i-closed set 
but not a b-closed set. 

          The class of all i-closed sets properly contains 
the class of  all b-closed sets. 

THEOREM 3.22.  Every b-closed set is a d-closed 
set. 

PROOF.  We know that every balanced set is a 
decreasing set.  Then every b-closed set is a d-
closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example.. 
      

EXAMPLE 3.23. Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and    ≤2 = {(a , a) , (b , b) , (c 
, c) , (a , b) , (c , b)}. Clearly (X , ,1τ  ≤2 ) is a 
topological ordered space.  

d-closed sets are φ  , X , {c} , {b , c}.  b-closed sets 
are φ   , X. 

Let A = {c} or {b , c}.  Clearly A is a d-closed set 
but not a b-closed set. 

       The class of all d-closed sets properly 
contains the class of all  b-closed sets. 

THEOREM 3.24.  i-closedness and d-closedness 
are independent notions.  This will be proved by  
the following examples.    
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EXAMPLE 3.25.  Example 3.21 shows that A = 
{c} or {b , c} is an i-closed set but not a d-closed 
set. 

EXAMPLE 3.26. Example 3.23 shows that A = {c} 
or {b , c} is a d-closed set but not a i-closed set. 

 

 

§4. Results between ig*, dg* and bg*-
closed type sets 

 We introduce the following definition. 

DEFINITION 4.1. A subset  ‘A’ of (X , ,τ  ≤ ) is 
called a ig*-closed set if icl(A) ⊆  U whenever      A
⊆U and U is a g-open in (X , τ ). 

The class of all ig*-closed subsets of (X , τ ) is 
denoted by IG*C(X). 

DEFINITION 4.2.   A subset  ‘A’ of (X , ,τ  ≤  ) is 
called a dg*-closed set if  dcl(A) ⊆  U whenever A
⊆U and U is a g-open in (X , τ ).   
    

The class of all dg*-closed subsets of (X , τ ) is 
denoted by DG*C(X). 

DEFINITION 4.3.  A subset  ‘A’ of (X , ,τ ≤ ) is 
called a bg*-closed set if  bcl(A) ⊆  U whenever  A
⊆U and U is a g-open in (X , τ ). 

The class of all dg*-closed subsets of (X , τ ) is 
denoted by BG*C(X).    

THEOREM 4.4.  Every ig*-closed set is an ig-
closed set. 

Proof.  We know that every g*-closed set is a g-
closed set.  Then every ig*-closed set is an ig-closed 
set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 4.5.  Let X = {a , b , c} ,  2τ  = {φ  , X , 
{a}} and        ≤1 = {(a , a) , (b , b) , (c , c) , (a , b) , 

(b , c) , (a , c)}.  Clearly (X , ,2τ ≤1 ) is a topological 
ordered space. 

ig-closed sets are φ  , X , {c} , {b , c}. ig*-closed 
sets are  φ , X , {b , c}. 

Let A = {c}.  Clerly A is an ig-closed set but not a 
ig*-closed set. 

 So the class of all ig-closed sets properly 
contains the class of all ig*-closed sets. 

THEOREM 4.6.  Every dg*-closed set is an dg-
closed set. 

Proof.  We know that every g*-closed set is a g-
closed set.  Then every dg*-closed set is an dg-
closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 4.7.  Let X = {a , b , c} ,  2τ  = {φ  , X , 
{a}} and       ≤2 = {(a , a) , (b , b) , (c , c) , (a , b) , 
(c , b)}.  Clearly (X , ,2τ  ≤2 ) is a topological 
ordered space. 

dg-closed sets are φ  , X , {c} , {b , c}.  dg*-closed 
sets are φ  , X , {b , c}. 

Let A = {c}.  Clerly A is an dg-closed set but not a 
dg*-closed set. 

 So the class of dg-closed sets properly 
contains the class of all dg*-closed sets.  

THEOREM 4.8.  Every bg*-closed set is a bg-
closed set. 

Proof.  We know that every g*-closed set is a g-
closed set.  Then every bg*-closed set is a bg-closed 
set. 

 The converse of above theorem need not be 
true.  This will be justify from the following 
example. 

EXAMPLE 4.9.  Let X = {a , b , c} ,  2τ  = {φ  , X , 
{a}} and ≤3 = {(a , a) , (b , b) , (c , c) ,     (a , b) , 
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(a , c)}.Clearly (X , ,2τ ≤3 ) is a topological ordered 
space.     

bg*-closed sets are φ  , X. bg-closed sets areφ  , X , 
{c}. 

Let A = {c}.  Clearly A is bg-closed set but not a 
bg*-closed set. 

 So the class of bg-closed sets properly 
contains the class of  all bg*-closed sets. 

THEOREM 4.10.  Every bg*-closed set is an ig*-
closed set. 

Proof.  We know that every balanced set is an 
increasing set.  Then every bg*-closed set is an ig*-
closed set. 

 The converse of above theorem need not be 
true.  This will be justify from the following 
example.       

EXAMPLE 4.11.  Let X = {a , b , c} ,  3τ  = {φ  , X 
, {a} , {b , c}} and     ≤3 = {(a , a) , (b , b) , (c , c) 
, (a , b) , (a , c)}. Clearly (X , ,3τ  ≤3 ) is a 
topological ordered space. 

Let A = {b}.  Clearly A is an ig*-closed set but not a 
bg*-closed set.  

THEOREM 4.12.  Every bg*-closed set is an dg*-
closed set. 

Proof.   We know that every balanced set is an 
dereasing set.  Then every bg*-closed set is an dg*-
closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 4.13.    Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and ≤3 = {(a , a) ,   (b , b) , 
(c , c) , (a , b) , (a , c)}.  Clearly (X , ,1τ  ≤3 ) is a 
topological ordered space. 

 Let A = {a , c}.  Clearly A is a dg*-closed 
set but not a ig*-closed set. 

       The class of all dg*-closed sets properly 
contains the class of  all bg*-closed sets. 

THEOREM 4.14. ig*-closedness and dg*-
closedness are independent notions.  This will be 
proved by in the following examples. 

EXAMPLE 4.15.  Let X = {a , b , c} ,  3τ  = {φ  , X 
, {a} , {b , c}} and    ≤3 = {(a , a) , ( b , b), (c , c) , 
(a , b) , (a , c)}. Clearly (X , ,3τ  ≤3 ) is a topological 
ordered space.Let A = {b}.  Clearly A is an ig*-
closed set but not a dg*-closed set.   
    

EXAMPLE 4.16.   Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and       ≤3 = {(a , a) , (b , 
b) , (c , c) , (a , b) , (a , c)}. Clearly (X , ,1τ  ≤3 ) is a 
topological ordered space. 

Let A = {a , c}.  Clearly A is a dg*-closed set but 
not a ig*-closed set.     

THEOREM 4.17.  Every i-closed set is an ig*-
closed set. 

Proof.  We know that every closed set is a g*-closed 
set.  Then  every i-closed set is an ig*-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 4.18.   Let X = {a , b , c} ,  3τ  = {φ  , 
X , {a} , {b , c}} and    ≤4 = {(a , a) , (b , b) , (c , 
c) , (a , b) , (c , b)}.  Clearly (X , ,3τ  ≤4 ) is a 
topological ordered space. 

ig*-closed sets areφ   , X , {b , c}.  i-closed sets are 
φ  , X.      

Let A = {b , c}.  Clearly A is a ig*-closed set but not 
an i-closed set.     

The class of all ig*-closed sets properly contains the 
class of all i-closed sets.    

THEOREM 4.19.  Every d-closed set is a dg*-
closed set. 

Proof. We know that every closed set is a g*-closed 
set.  Then every d-closed set is a dg*-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example.  
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EXAMPLE 4.20.  Let X = {a , b , c} ,  4τ  = {φ  , X 
, {a} , {b , c}} and ≤2 = {(a , a) , (b , b) , (c , c) , 
(a , b) , (c , b)}.  Clearly (X , ,4τ  ≤2 ) is a 
topological ordered space. 

dg*-closed sets are φ  , X , {b , c}.  d-closed sets are 
φ  , X.  

Let A = {b , c}.  Then A is dg*-closed set but not a 
d-closed set.      

The class of all dg*-closed sets properly contains the 
class of  all d-closed sets. 

THEOREM 4.21.  Every b-closed set is a bg*-
closed set. 

PROOF.  We know every closed set is a g*-closed 
set.  Then every b-closed set is a bg*-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example.  

EXAMPLE 4.22.  Let X = {a , b , c} ,  6τ  = {φ  , X 
, {a} , {b} , {a , b}{a , c}} and                ≤7 = {(a , 
a), (b , b), (c , c), (b , c), (c , a), (b , a)}.   Clearly (X 
, ,6τ  ≤7 ) is a topological ordered space.bg*-closed 
sets are φ  , X , {b}.   b-closed sets are φ  , X. 
   

Let A = {b}. Then A is bg*-closed set but not a b-
closed set.      

The class of all bg*-closed sets properly contains the 
class of all b-closed sets.   

THEOREM 4.23.  Every bg*-closed set is an ig-
closed set. 

Proof. We know that every balanced set is an 
increasing set and every g*-closed set  is a g-closed 
set .  Then every bg*-closed set is an ig-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE  4.24.  Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and       ≤3 = {(a , a) , (b , 
b) , (c , c) , (a , b) , (a , c)}.   Clearly (X , ,1τ  ≤3 ) is 
a topological ordered space. 

bg*-closed sets are φ  , X.   ig-closed sets are φ  , X 
, {c} , {b , c}. 

Let A = {c} or {b , c}.  Clearly A is an ig-closed set 
but not a bg*-closed set. 

        The class of all ig-closed sets properly contains 
the class of all bg*-closed sets.     
  

THEOREM 4.25.  Every bg*-closed set is a dg-
closed set.      

Proof. We know that every balanced set is a 
decreasing set and every g*-closed set  is a g-closed 
set .  Then every bg*-closed set is a dg-closed set. 

The converse of above theorem need not be true.  
This will be justify from the following example. 

EXAMPLE 4.26.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and ≤2 = {(a , a) ,     (b , b) , 
(c , c) , (a , b) , (c , b)}.Clearly (X , ,1τ ≤2) is a 
topological ordered space. 

bg*-closed sets are φ  , X.  dg-closed sets are φ  , X , 
{c} , {b , c}. 

Let A = {c} or {b , c}.  Clearly A is a dg-closed set 
but not a bg*-closed set.    

The class of all dg-closed sets properly contains the 
class of all bg*-closed sets. 

THEOREM 4.27.  bg-closedness and ig*-
closedness are independent notions.  This will be 
seen in the following examples. 

EXAMPLE 4.28.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and            ≤1 = {(a , a) , (b , b) 
, (c , c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1τ  ≤1 

) is a topological ordered space. 

ig*-closed sets are φ  , X , {c} , {b , c}.  bg-closed 
sets are φ  , X 

Let A = {c} or {b , c}.  Clearly A is an ig*-closed 
but not a bg-closed set.    
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EXAMPLE 4.29.  Let X = {a , b , c} ,  2τ  = {φ  , X 
, {a}} and                                                        ≤5 = 
{(a , a) , (b , b) , (c , c) , (a , c) , (b , c)}.   Clearly (X 
, ,2τ  ≤5 ) is a topological ordered space.ig*-closed 
sets are φ  , X , {b , c}.   bg-closed sets are φ  , X , 
{c} , {b , c} , {c , a}. 

 Let A = {c} or {c , a}.  Clearly A is an bg-
closed set but not a ig*-closed set.  

THEOREM 4.30.  bg-closedness ad dg*-closedness 
are independent notions.  This will be seen in the 
following examples.     

EXAMPLE 4.31.  .  Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and ≤3 = {(a , a) , (b , b) , (c , 
c) , (a , b) , (a , c)}.  Clearly (X , ,1τ  ≤3 ) is a 
topological ordered space. 

dg*-closed sets are φ  , X , {c} , {b , c}.   bg-closed 
sets are φ  , X , {c}. 

Let A = {b , c}.  Clearly A is a dg*-closed set but 
not a bg-closed set. 

EXAMPLE 4.32.  .  Let X = {a , b , c} ,  2τ  = {φ  , 
X , {a}} and ≤3 = {(a , a) , (b , b) , (c , c) , (a , b) , 
(a , c)}.  Clearly (X , ,2τ  ≤3 ) is a topological 
ordered space.    

dg*-closed sets are φ  , X. bg-closed sets areφ   , X , 
{c}.      

Let A = {c}.  Clearly A is a bg-closed set but not a 
dg*-closed set. 

THEOREM 4.33. Every i-closedness and bg*-
closedness are independent notions.  This will be 
seen in the following examples. 

EXAMPLE 4.34.   Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and ≤1 = {(a , a) ,       (b , b) , 
(c , c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1τ  ≤1 ) 
is a topological ordered space. 

bg*-closed sets are φ  , X.  i-closed sets are φ  , X , 
{c} , {b , c}. 

Let A = {c} or {b , c}.  Clearly A is an i-closed set 
but not a bg*-closed set. 

         The class of all i-closed sets properly contains 
the class of  all bg*-closed sets.  

EXAMPLE 4.35.  Let X = {a , b , c} ,  10τ  = {φ  , 
X , {c} , {b , c}} and                                       ≤5 = 
{(a , a) , (b , b) , (c , c) , (b , c) , (a , c)}.  Clearly (X 
, ,10τ ≤5 ) is a topological ordered space. bg*-closed 
sets are φ  , X , {c , a}.   i-closed sets are  φ  , X. 

Let A = {c , a}.  Clearly A is a bg*-closed set but 
not an i-closed set. 

          The class of  all bg*-closed sets properly 
contains the class of all i-closed sets. 

THEOREM 4.36.  d-closedness and bg*-closedness 
are independent notions.  This will be seen in the 
following examples.    
   

EXAMPLE 4.37.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and                                  ≤2 = 
{(a , a) , (b , b) , (c , c) , (a , b) , (c , b))}.  Clearly 
(X , ,1τ ≤2 ) is a topological ordered space.  bg*-
closed sets are φ  , X.  d-closed sets are φ  , X , {c} , 
{b , c}.    

Let A = {c} or {b , c}.  Clearly A is a d-closed set 
but not a bg*-closed set.     

The class of all bg*-closed sets properly contains the 
class of all d-closed sets. 

EXAMPLE 4.38.  Let X = {a , b , c} ,  8τ  = {φ  , X 
, {a , b}} and ≤5 = {(a , a) , (b , b) , (c , c) , (a , c) , 
(b , c))}.  Clearly (X , ,8τ  ≤5 ) is a topological 
ordered space. 

bg*-closed sets are φ  , X , {c} , {b , c} , {c , a}.
 d-closed sets are φ  , X , {c}. 

Let A = {b , c} or {c , a}.  Clearly A is bg*-closed 
set but not a d-closed set. 

          The class of all bg*-closed sets properly 
contains the class of  all d-closed sets.  
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THEOREM 4.39.  Every b-closed set is an ig*-
closed set.Proof.  We know that every closed set is a 
g*-closed set and every balanced set is an increasing 
set. Then every b-closed set is an ig*-closed set.   

The converse of above theorem need not be true.  
This will be justify from the following example. 
      

EXAMPLE 4.40.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and  ≤1 = {(a , a) , (b , b) , (c , 
c) , (a , b) , (b , c) , (a , c)}.  Clearly (X , ,1τ  ≤1 ) is a 
topological ordered space. 

ig*-closed sets are φ  , X , {c} , {b , c}.  b-closed 
sets are φ  , X.   

Let A = {c} or {b , c}.  Clearly A is an ig*-closed 
set but not a b-closed set. 

          The class of ig*-closed sets properly contains 
the class of  all b-closed sets. 

THEOREM 4.41. Every b-closed set is a dg*-
closed set. 

Proof.  We know that every balanced set  is a 
decreasing set and every closed set is a g*-closed 
set.  Then every b-closed set is a dg*-closed set.   

The converse of above theorem need not be true.  
This will be justify from the following example. 

 EXAMPLE 4.42.  Let X = {a , b , c} ,  1τ  = {φ  , 
X , {a} , {b} , {a , b}} and 

 ≤2 = {(a , a) , (b , b) , (c , c) , (a , b) , (c , 
b)}.Clearly (X , ,1τ  ≤2 ) is a topological ordered 
space.  dg*-closed sets are  φ , X , {c} , {b , c}.  b-
closed sets areφ  , X.    

Let A = {c} or {b , c}.  Clearly A is a dg*-closed set 
but not a b-closed set. 

           The class of dg*-closed sets properly 
contains the class of  all b-closed sets.   

THEOREM 4.43.  Every b-closed set is an ig-
closed set. 

Proof.  We know that every closed set is a g-closed 
set and every balanced set is an increasing set. Then 
every b-closed set is an ig-closed set. 

 The converse of the above theorem need not be true  
as we see the following example. 

EXAMPLE 4.44.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and 

≤1 = {(a , a) , (b , b) , (c , c) , (a , b) , (b , c) , (a , 
c)}.Clearly (X , ,1τ  ≤1 ) is a topological ordered 
space.  ig-closed sets are φ  , X , {c} , {b , c}.   b-
closed sets areφ   , X. 

Let A = {c} or {b , c}.  Clearly A is an ig-closed set 
but not a b-closed set. 

        The class of all ig-closed sets properly contains 
the class of all b-closed sets.   

THEOREM 4.43. Every b-closed set is a dg-closed 
set. 

Proof.  We know that every balanced set  is a 
decreasing set and every closed set is a g*-closed 
set.  Then every b-closed set is a dg-closed set.  

 The converse of above theorem need not be true.  
This will be justify from the following example. 
  

EXAMPLE 4.44.  Let X = {a , b , c} ,  1τ  = {φ  , X 
, {a} , {b} , {a , b}} and 

 ≤2 = {(a , a) , (b , b) , (c , c) , (a , b) , (c , b)}. 
Clearly (X , ,1τ ≤2) is a topological ordered space.  
dg-closed sets areφ   , X , {c} , {b , c}.  b-closed 
sets areφ   , X. 

Let A = {c} or {b , c}.  Clearly A is a dg-closed set 
but not a b-closed set. 

III.          
IV.  
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V. FIGURES AND TABLES 
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VI. CONCLUSION 
     In this paper, we introduced , new class of sets, 

studied  various relationship between them.  
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